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Abstract. A convexification method is proposed for solving a class of global optimization problems
with certain monotone properties. It is shown that this class of problems can be transformed into
equivalent concave minimization problems using the proposed convexification schemes. An outer
approximation method can then be used to find the global solution of the transformed problem.
Applications to mixed-integer nonlinear programming problems arising in reliability optimization of
complex systems are discussed and satisfactory numerical results are presented.
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1. Introduction

We consider global optimization problems of the form:

max f (x) (1)

s.t. gj (x) � cj , j = 1, 2, . . . , m,

x ∈ X,
where f : R

n → R and gj : R
n → R, j = 1, . . . , m, are continuous functions

satisfying the following monotone properties: (a) f (x) and gj (x), j = 1, . . . , m,
are increasing functions of each xi , or (b) f (x) and gj (x), j = 1, . . . , m, are
decreasing functions of each xi . We assume that X is a nonempty closed set.

The problem (1) can be viewed as the continuous version of the multidimen-
sional nonlinear knapsack problem. Due to the monotonicity of f and the gj ’s,
the optimal solution of (1) always lies on the boundary of the feasible region. The
problem (1), however, may have multiple local optimal solutions since f (x) is not
necessarily concave and gj are not necessarily convex. Therefore, problem (1) is
essentially a global optimization problem.
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The literature on the solution methods for global optimization can be classified
into two categories. The methods in the first category are devised to cope with
general global optimization problems with no special structural property assumed.
This category includes deterministic methods (see, e.g., Barhen et al., 1997, Ge,
1990, Horst, 1990, Horst and Tuy, 1993, Levy and Montalvo, 1985 and the refer-
ences therein) and stochastic methods (see, e.g., Cvijović and Klinowski, 1995,
Rinnoy Kan and Timmer, 1987a,b and the references therein). The second cat-
egory of methods confines its applicability to certain structured global optimization
problems, in particular, concave minimization, D.C. programming and reverse con-
vex programming (see Benson, 1996, Hoffman, 1981, Horst, 1990, Pardalos and
Rosen, 1987). For concave minimization, the global minimum over a compact con-
vex set is always achieved at an extreme point of the convex set. This prominent
feature leads to various implementable algorithms that guarantee a convergence
to a global optimal solution of the problem. Recent results in Li et al., (2001)
reveal that via an equivalent transformation using a pth-power method a monotone
optimization problem can be always converted into an equivalent better-structured
nonconvex optimization problem, e.g., a concave optimization problem or a D.C.
programming problem. Combined with a monotonization scheme, they further
apply the proposed convexification and concavification scheme to a nonconvex
optimization problem over a simplex.

The main purpose of this paper is to present a novel general framework of
convexification transformation methods to convert problem (1) into a concave min-
imization problem. The monotone property of (1) and the resulting convex feasible
region allow us to adopt an outer approximation procedure for solving the result-
ing concave minimization problem. This convexification method is applicable to a
large class of real-world optimization problems arising in reliability network sys-
tems where monotonicity is an inherent property. Convexification solution schemes
have been recently adopted successfully in some other subjects of optimization,
such as in convexifying the perturbation function and Lagrangian function in the
dual search methods for nonlinear programming (see Li, 1995, Li and Sun, 2000)
and in convexifying the noninferior frontier in multiobjective optimization (see Li,
1996). In Section 2 we establish a general theorem on the relationship between
monotonicity and convexity of a real function. Two specific forms of convexifica-
tion transformation are then proposed. In Section 3 the convexification transforma-
tion is applied to the functions in problem (1). The resulting equivalent problem
is a concave minimization problem to which outer approximation method can
be used to search for a global optimal solution. In Section 4 we show how the
proposed convexification methods can be adopted to tackle mixed-integer nonlin-
ear programming problems in reliability network system by combining the outer
approximation method with a branch-and-bound strategy.
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2. Convexification transformations of monotone functions

A function h : X → R is called strictly increasing (decreasing) on X if h(x)
is a strictly increasing (decreasing) function of each xi . Consider the following
transformation of function h(x):

hp(y) = T

(
ph

(
1

p
t(y)

))
, (2)

where p > 0 is a parameter, T : R
1 → R

1 is a real function and t : R
n → R

n is a
separable 1-1 mapping, i.e., t (y) = (t1(y1), . . . , tn(yn)) for y = (y1, . . . , yn). The
domain of hp(y) is

Yp = {y | y = t−1(px), x ∈ X}. (3)

Let � be an open set satisfying Yp ⊆ � for all p > 0.

THEOREM 1. Assume that
(i) h ∈ C

2(X), ti ∈ C
2(�), i = 1, . . . , n, and T ∈ C

2(R).
(ii) h is a strictly increasing function on X satisfying

inf

{
∂h

∂xi
| x ∈ X, i = 1, . . . , n

}
� ε > 0, (4)

σ = inf{dT∇2h(x)d | x ∈ X, ‖d‖2 = 1} > −∞. (5)

(iii) T is a strictly increasing and convex function.
(iv) ti , i = 1, . . . , n, are strictly monotone functions satisfying

t ′′i (yi)
t ′i (yi)2

� τ > 0, y ∈ �, i = 1, . . . , n. (6)

Then there exists a finite p0 > 0 such that hp(y) is a convex function on any
convex subset of Yp when p � p0.

Proof. It suffices to prove that the Hessian of hp(y) is a positive semi-definite
matrix for any y ∈ Yp. Let x = 1

p
t (y) and w = ph(x) for y ∈ Yp. Then x ∈ X by

the definition of Yp. From (2), we have

∂hp

∂yi
= T ′(w)

∂h

∂xi
t ′i (yi), i = 1, . . . , n.

Thus

∂2hp

∂y2
i

= T ′′(w)
(
∂h

∂xi

)2

t ′i (yi)
2 + 1

p
T ′(w)

∂2h

∂x2
i

t ′i (yi)
2

+ T ′(w)
∂h

∂xi
t ′′i (yi), (7)
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∂2hp

∂yi∂yj
= T ′′(w)

(
∂h

∂xi

)(
∂h

∂xj

)
t ′i (yi)t

′
j (yj )

+ 1

p
T ′(w)

∂2h

∂xi∂xj
t ′i (yi)t

′
j (yj ), i �= j. (8)

Let

A(y) = diag
(
t ′1(y1), · · · , t ′n(yn)

)
,

B(y) = diag

(
∂h

∂x1

t ′′1 (y1)

t ′(y1)
2
, . . . ,

∂h

∂xn

t ′′n (yn)
t ′n(yn)2

)
.

Combining (7) with (8) gives

∇2hp(y) =A(y)(T ′′(w)∇h(x)∇h(x)T + 1

p
T ′(w)∇2h(x)

+ T ′(w)B(y))A(y)
=A(y)C(x, y,w)A(y), (9)

where

C(x, y,w) = T ′′(w)∇h(x)∇h(x)T + 1

p
T ′(w)∇2h(x)+ T ′(w)B(y).

It follows from (9) that, if C(x, y,w) is a positive semi-definite matrix, then
∇2hp(y) is a positive semi-definite matrix.

For any d ∈ R
n with ‖d‖2 = 1, from (4), (5) and (6), we have

dT C(x, y,w)d = T ′′(w)(dT∇h(x))2 + 1

p
T ′(w)dT∇2h(x)d

+ T ′(w)dT B(y)d

� 1

p
T ′(w)dT∇2h(x)d + T ′(w)dT B(y)d

= T ′(w)

(
1

p
dT∇2h(x)d +

n∑
i=1

d2
i

∂h

∂xi

t ′′i (yi)
t ′i (yi)2

)

�T ′(w)
(

1

p
σ + ετ

)
, (10)

where the first inequality follows from the fact that T is a convex function and so
T ′′(w) � 0. Let p � p0 with

p0 =
{

− σ

ετ
, σ < 0

any positive number, σ � 0
(11)
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Notice that T is strictly increasing and so T ′(w) > 0. Then, from (10), we deduce
that dT C(x, y,w)d � 0 for any d ∈ R

n. Therefore, ∇2hp(y) is a positive semi-
definite matrix for all y ∈ Yp when p � p0.

REMARK 1. A sufficient condition for (4) and (5) is that X is a compact set.

REMARK 2. Suppose that h(x) is a strictly decreasing function onX. Then h(−x)
is a strictly increasing function on −X. Note that function hp(y) in (2) can be
rewritten as

hp(y) = T
(
ph

(
− 1

p
(−t)(y)

))
.

So, Theorem 1 is applicable to the strictly decreasing function h(x) via replacing
h(x) in (4) and t in (6) with h(−x) and −t , respectively. This can be general-
ized further to functions which are strictly increasing with respect to some com-
ponents and strictly decreasing with respect to others by doing the above sign
transformation only to the latter.

In the following, we give two examples of functional forms for ti which satisfy
condition (iv) in Theorem 1. Assume α is a parameter, α �= 0. Define

q1(s) = ln
(

1 + α

s

)
, αs > 0, (12)

q2(s) = − ln(1 + αs), αs > 0. (13)

We have

q ′
1(s) = − α

s(s + α),

q ′′
1 (s) = α(2s + α)

s2(s + α)2 � α2

s2(s + α)2 = q ′
1(s)

2, (14)

q ′
2(s) = − α

1 + αs ,

q ′′
2 (s) = α2

(1 + αs)2 = q ′
2(s)

2. (15)

COROLLARY 1. Let h be a twice differentiable and strictly increasing function
on

X = {x | li � xi � ui, i = 1, . . . , n} (16)

with 0 < li < ui < ∞, i = 1, . . . , n. Assume that T is a twice differentiable,
strictly increasing and convex function. Take ti = q1 in (12) or ti = q2 in (13),
i = 1, . . . , n. Then there exists p0 > 0 such that hp(y) is a convex function on Yp
when p � p0.
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Figure 1. The plot of h(x).

Figure 2. The plot of hp(y) with p = 0.3.
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Proof. Since X is a compact set, there exist ε > 0 and finite σ such that (4) and
(5) hold. We only need to verify that condition (iv) in Theorem 1 is satisfied. If
ti = q1 or ti = q2 in (2), i = 1, . . . , n, then the domain of hp(y) is

Yp = {y | t−1
i (pli) � yi � t−1

i (pui), i = 1, . . . , n}, α < 0,

or

Yp = {y | t−1
i (pui) � yi � t−1

i (pli), i = 1, . . . , n}, α > 0.

Obviously, ti is a strictly monotone function on Yp. Notice that y < 0 for any
y ∈ Yp when α < 0 and y > 0 for any y ∈ Yp when α > 0. Equation (14) or (15)
implies that (6) holds with τ = 1 and � = {y | yi < 0, i = 1, . . . , n} when α < 0
or � = {y | yi > 0, i = 1, . . . , n} when α > 0.

For illustration, let us consider a one-dimensional function:

h(x) = (x − 2)3 + 2x, x ∈ X = [1, 3].
The plot of h(x) is shown in Fig. 1, where aj = 1 + 0.2j , j = 0, 1, . . . , 10. Note
that h′(x) = 3(x − 2)2 + 2 � 2 and h′′(x) = 6(x − 2) � −6 for x ∈ [1, 3].
Take t (y) = ln(1 − 1

y
) and T (w) = exp(w) in (2). By Corollary 1 and (11),

p0 = −(−6)/2 = 3. So, any p � 3 will guarantee the convexity of hp(y) on
Yp = [t−1(p), t−1(3p)]. In practice, p can be chosen to be much smaller than the
bound defined in (11). Figure 2 shows the convexified plot of hp(y) with p = 0.3,
where bi = t−1(ai), i = 0, · · · , 10.

Theorem 1 and the above discussions reveal that the convexity of a monotone
function can be achieved via transformation (2) under certain conditions on T and
t . The proposed convexification methods involve both the function transformation
and the variable transformation. An important feature of the convexification trans-
formation (2) is that the variable transform y ↔ 1

p
t (y) is a 1-1 monotone mapping

between Yp and X which is crucial for the equivalence between problem (1) and
the transformed one. These equivalences will be established in Section 3.

3. Concave minimization

In this section, we establish the equivalence between problem (1) and its trans-
formed concave minimization problems. Consider the following optimization prob-
lem which is a transformation of (1):

max )0(f (θ(y))) (17)

s.t. )j (gj (θ(y))) � )j(cj ), j = 1, . . . , m,

y ∈ Y,
where )j : R → R, j = 0, 1, . . . , m, and θ : Y → X. Let S and S̃ denote the
feasible regions of (1) and (17), respectively.
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THEOREM 2. Assume that)j , j = 0, 1, . . . , m, are strictly increasing functions
and θ is an onto mapping with X = θ(Y ). Then

(i) y∗ ∈ Y is a global optimal solution to (17) if and only if x∗ = θ(y∗) is a
global optimal solution to (1).

(ii) If θ−1 exists and both θ and θ−1 are continuous mappings, then y∗ ∈ Y is
a local optimal solution to (17) if and only if x∗ = θ(y∗) is a local optimal
solution to (1).

Proof. (i) Let x ∈ X. Since θ is an onto mapping and X = θ(Y ) there exists
y ∈ Y such that x = θ(y). Since )j , j = 1, . . . , m, are strictly increasing, we
have

gj (x) � cj ⇔ gj (θ(y)) � cj ⇔ )j(gj (θ(y))) � )j(cj ).

So x ∈ S ⇔ y ∈ S̃. Moreover,

)0(f (θ(y))) � )0(f (θ(y
∗)))⇔ f (θ(y)) � f (θ(y∗))⇔ f (x) � f (x∗).

Thus y∗ is a global optimal solution to (17) if and only if x∗ is a global optimal
solution to (1).

(ii) Let y∗ be a local optimal solution to (17). Then there exists an open neigh-
borhood B(y∗) of y∗ such that

)0(f (θ(y))) � )0(f (θ(y
∗))), ∀y ∈ B(y∗) ∩ S̃. (18)

Since θ−1 is a continuous mapping there must exist an open neighborhood B(x∗)
of x∗ such that θ−1(B(x∗)) ⊆ B(y∗). From the proof of (i), S = θ(S̃). Thus, we
have from (18) that

f (x) � f (x∗), ∀x ∈ B(x∗) ∩ S,
which implies that x∗ is a local optimal solution to (1). Conversely, we can prove
by similar argument that y∗ is a local optimal solution to (17) if x∗ = θ(y∗) is a
local optimal solution to (1).

In the remainder of this section, we suppose that X is a box set defined by
(16), f and gi are strictly increasing functions on X. Suppose also that Tj , j =
0, 1, . . . , m, and t satisfy the conditions in Theorem 1 (with T = Tj ). Consider
the following problem:

max φ(y) = T0

(
pf

(
1

p
t(y)

))
(19)

s.t. ψj (y) = Tj
(
pgj

(
1

p
t(y)

))
� Tj (pcj ), j = 1, . . . , m,

y ∈ Yp,
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where Yp is defined by (3). It follows from Theorem 2 that problem (19) is equiva-
lent to problem (1). On the other hand, Theorem 1 ensures that φ(y) and ψj(y) are
convex functions on Yp when p is larger than certain threshold value. Note that Yp
is also a box set since X is a box set and t is a separable mapping. Therefore, when
p is sufficient large, (19) is a problem of maximizing a convex function over a
general convex set, or equivalently a concave minimization problem (see Pardalos
and Rosen, 1987).

The convexification transformation (2) can also be used to produce a concave
minimization problem from a problem where the objective function and constraint
function are strictly decreasing functions (see Remark 2 in Section 2).

We now discuss solution methods for the equivalent concave minimization prob-
lem (19). For convenience, we describe the method for problem (19) where ti ,
i = 1, . . . , n, are strictly increasing functions. For example, if we take ti = q1

defined in (12) with α < 0, or ti = q2 defined in (13) with α < 0, then ti ,
i = 1, . . . , n, are strictly increasing functions. It is well-known that a convex
function always achieves its maximum value over a polyhedron at one of its ver-
tices. An optimal solution can then be obtained by ranking all the vertices of the
polyhedron. For maximizing a convex function over a general convex set, a natural
approach is to maximize the convex function over a sequence of polyhedra which
enclose the feasible set and approach it in the limit. Hoffman (1981) proposed the
following outer approximation method which approximates the convex feasible set
by successively constructing cutting planes. Let Sp denote the feasible region of
problem (19). Suppose that we have a fixed interior point ỹ of Sp and an initial
enclosing polyhedron with all its vertices known. At the k-th iteration of Hoff-
man’s method, a tighter polyhedron is formed by adding a new cutting plane at the
boundary point yk of Sp which is on the line connecting the interior point ỹ and
the current best vertex vk . The maximum of the function values at vertices of the
new polyhedron then provides an improved upper bound on the optimal value. A
variation of Hoffman’s outer approximation method is proposed in Horst and Tuy
(1993). In this method, the cutting plane is formed at a projection point yk of vk
to the feasible region with a hope that a deeper cut and thus a tighter enclosing
polyhedron is obtained. We note that projecting a point onto a general convex set
is equivalent to finding the closest point in l2 norm on the boundary of the feasible
set. This can be done by solving a convex programming with a quadratic objective
function.

An illustrative example below shows how a problem in the form of (1) with
multiple local optimal solutions can be transformed into a concave minimization
problem and then solved by an outer approximation.

EXAMPLE 1.

max f (x) = 4.5(1 − 0.40x1−1)(1 − 0.40x2−1)+ 0.2 exp(x1 + x2 − 7)

s.t. g1(x) = 5x1x2 − 4x1 − 4.5x2 � 32,

x ∈ X = {x | 2 � x1 � 6.2, 2 � x2 � 6}.
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Figure 3. The feasible set S of Example 1.

Figure 4. The convexified feasible set Sp of Example 1.
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It is clear that f and g1 are strictly increasing functions on X. The problem has
three local optimal solutions: x1 = (2.26923, 6) with f (x1) = 3.773461249,
x2 = (3.45284, 3.58904) with f (x2) = 3.857736888 and x3 = (6.2, 2.14339)
with f (x3) = 3.663127142. As shown in Fig. 3, the feasible region S of the
problem is not a convex set. Moreover, the global optimal solution x2 is not even
on the boundary of the convex hull of S. In the transformed problem (19), take
T0(w) = T1(w) = exp(w) and ti (yi) = ln(1 − 1

yi
), i.e., ti = q1 (i = 1, 2) with α =

−1 in (12). Then it can be verified that functions φ(y) and ψ1(y) in problem (19)
are convex on Yp when p = 0.5. The feasible set Sp of problem (19) is illustrated
in Fig. 4 where yk = t−1(pxk), k = 1, 2, 3, are the transformed local optimal solu-
tions. We can see that the transformed global optimal solution y2 now is a boundary
point of the convexified feasible set Sp. A procedure based on the outer approxima-
tion method in Horst and Tuy (1993) finds an approximate global optimal solution
y∗ = (−0.21642,−0.19934) of (19) after 17 iterations and generating 36 vertices.
The point y∗ corresponds to x∗ = (ln(1 − 1

y∗
1
), ln(1 − 1

y∗
2
))= (3.45290, 3.58899),

an approximate optimal solution to Example 1 with f (x∗) = 3.857736887.

4. Applications to reliability optimization

Optimal reliability and redundancy allocation and cost minimization of general
system are two major classes of optimization problems in reliability network design
(see Tillman et al., 1980; Tzafestas, 1980).

Given a network with n subsystem, the optimal reliability and redundancy alloc-
ation problem is to determine simultaneously the number of redundant components
in each of q parallel subsystems and the reliability levels of n − q general sub-
systems so as to maximize the overall reliability of the system subject to certain
resource constraints. The problem is described by the following mixed-integer
program:

max Rs(x,R) = f (R1(x1), . . . , Rq(xq), Rq+1, · · · , Rn) (20)

s.t. Cj (x, R) � cj , j = 1, . . . , m,

1 � ai � xi � bi, xj integer, i = 1, . . . , q,

0 < αi � Rq+i � βi < 1, i = 1, . . . , n− q,
where (x, R) = (x1, · · · , xq, Rq+1, · · · , Rn), xi represents the number of redund-
ant components in i-th subsystem, Ri is the reliability of i-th subsystem (in par-
ticular, Ri(xi) = 1 − (1 − ri)

xi , i = 1, · · · , q, is the reliability of i-th parallel
subsystem with 0 < ri < 1), Rs(x,R) is the overall system reliability, Cj(x,R)
is the j -th resource consumed; cj is the total available j -th resource, ai and bi are
lower and upper integer bounds of xi , respectively.

Let

D = {(x, R) ∈ R
n | ai � xi � bi, i = 1, · · · , q, αi � Rq+i

� βi, i = 1, · · · , n− q}.
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Although the forms of f and the Cj depend on the network structure, f and the Cj
are strictly increasing functions of (x, R) on D, but they are not necessarily con-
vex or concave. Thus (20) is in general a nonconvex mixed-integer programming
problem. Another optimization problem closely related to (20) is the cost minimiz-
ation problem in reliability systems (see Tzafestas, 1980) which is to minimize the
weighted cost of a reliability system subject to a minimum reliability constraint.

The existing solution methods for (20) are mainly heuristic due to the combinat-
orial and nonconvex nature of the problem (see Misra and Sharma, 1991; Tillman
et al., 1980; Tzafestas, 1980). A fundamental difficulty when using a traditional
branch-and-bound method to solve the above reliability problems is that the con-
tinuous relaxations are not convex problems. There is therefore no guarantee that a
local optimization method will find the global solution, and if it does not a bound
generated may be invalid.

The convexification method developed in the previous sections provides an ex-
act and quite efficient method for solving (20) and the related cost minimization
problem when combining with a branch-and-bound strategy. Relaxing the integral
restriction for x1, · · · , xq , problem (20) can be transformed into a concave minim-
ization problem in the form of (19). At each node of the branch and bound tree, a
concave minimization subproblem is solved using the outer approximation method
with a guarantee of finding a global optimum point within a given accuracy. The
variable range in each subproblem has the form

Dk = {(x, R) ∈ R
n | aki � xi � bki , i = 1, . . . , q, αi � Rq+i

� βi, i = 1, · · · , n− q}.
SinceDk ⊂ D we can take the same parameter p for each continuous subproblems
when the convexification transformation (2) is applied to the subproblems. The
following important properties of the problem greatly accelerate the convergence
of the branch-and-bound search for problem (20):

(i) the outer approximation polyhedron obtained in the last iteration for solv-
ing the parent continuous subproblem can be used to form a tight initial
polyhedron of all descendant continuous subproblems;

(ii) if the right upper corner point (bk1, . . . , b
k
q , β1, · · · , βn−q) ofDk is feasible,

then it is an optimal solution to the corresponding subproblem;
(iii) if the left lower corner point (ak1, . . . , a

k
q , α1, · · · , αn−q) of Dk is infeas-

ible, then the corresponding subproblem is infeasible;
(iv) let Rz be the reliability value of the current best feasible solution. Then

Rz provides an additional stopping criteria when solving the descendant
subproblems. In fact, suppose in k-th iteration, vk is the vertex with max-
imum overall reliability. If Rs(t−1(vk)) � Rz then the outer approximation
method can be terminated at k-th iteration since, in this case, it is im-
possible for the subproblem to generate a feasible solution with reliability
value being greater than Rz.
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We have coded a branch-and-bound procedure for (20) and the related cost
minimization problem using Fortran 90. In our implementation, the relaxed sub-
problems are solved by a subroutine based on the outer approximation method
in Horst and Tuy (1993). The most fractional variable is chosen for branching
with depth-first node search and backtracking to the best node each time a feasible
solution is found. The test problems are from two typical complex systems: Bridge
and ARPA networks (see Misra and Sharma, 1991, Tzafestas, 1980).

EXAMPLE 2. Five-link Bridge network optimal reliability and redundancy alloc-
ation.

max Rs(x,R) = R1R2 +Q2R3R4 +Q1R2R3R4 + R1Q2Q3R4R5

+Q1R2R3Q4R5

s. t. C1(x) = x1x2 + 2.2x2x3 + 1.5x2x4 + 2 exp

(
0.01

1 − R5

)
� 28,

C2(x) = x1 + 0.1x2 + 2x3 + x4 + 5 exp

(
0.01

1 − R5

)
� 25,

C3(x) = x2
1 + (x2 − 2)3 + 1.5x3 + x4 + 0.6 exp

(
0.01

1 − R5

)
� 21,

1 � xi � 6, xi integer, i = 1, · · · , 4, 0.50 � R5 � 0.99,

where Ri := Ri(xi) = 1 − (1 − ri)xi , i = 1, · · · , 4, Qi = 1 − Ri , i = 1, · · · , 5,
r1 = 0.70, r2 = 0.85, r3 = 0.75, r4 = 0.8.

EXAMPLE 3. Seven-link ARPA network optimal reliability and redundancy al-
location.

max Rs(x,R) = R6R7 + R1R2R3(Q6 + R6Q7)+ R1R4R7Q6(Q2 + R2Q3)

+ R3R5R6Q7(Q1 + R1Q2)+ R1R2R5R7Q3Q4Q6

+ R2R3R4R6Q1Q5Q7 + R1R3R4R5Q2Q6Q7

s. t. C1(x) = x1x2 + 0.5x1 log(1 + x3)+ x4 + 2x5 + 0.3 exp

(
0.02

1 − R6

)

+ 0.3 exp

(
0.01

1 − R7

)
� 27,

C2(x) = (x1 + 2x2 + 1.2x3) log(1 + x1 + x2 + 2x3)+ 0.4x4

+ 0.2x5 exp

(
0.02

1 − R6

)
+ 0.5 exp

(
0.01

1 − R7

)
� 29,

1 � xi � 4, xi integer, i = 1, · · · , 5, 0.5 � Ri � 0.99, i = 6, 7,

where Ri := Ri(xi) = 1 − (1 − ri)xi , i = 1, · · · , 5, Qi = 1 − Ri , i = 1, · · · , 7,
r1 = 0.70, r2 = 0.90, r3 = 0.80, r4 = 0.65, r5 = 0.70.
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Table 1. Numerical results for Examples 2–5

Problem p x∗ R∗ NLP NV CPU seconds

Example 2 1 (2,1,6,5,0.9396) 0.99992653 10 734 9.84

Example 3 1 (4,1,3,4,3,0.9845,0.9899) 0.99974476 13 3494 38.63

Example 4 2 (1,1,5,4,0.5) 0.99921211 12 1173 15.97

Example 5 2 (3,1,2,2,2,0.9869,0.9900) 0.99900000 17 4150 48.00

EXAMPLE 4. Five-link Bridge network cost minimization.

min Cw(x,R) = 0.3C1(x)+ 0.5C2(x)+ 0.2C3(x)

s.t. Rs(x, R) � 0.999,

1 � xi � 6, xi integer, i = 1, · · · , 4, 0.50 � R5 � 0.99,

where Rs(x,R) and Ci (i = 1, 2, 3) are defined in Example 2.

EXAMPLE 5. Seven-link ARPA network cost minimization.

min Cw(x,R) = 0.4C1(x)+ 0.6C2(x)

s.t. Rs(x, R) � 0.999,

1 � xi � 4, xi integer, i = 1, · · · , 5, 0.5 � Ri � 0.99, i = 6, 7,

where Rs(x,R) and Ci (i = 1, 2) are defined in Example 3.

Numerical results for Example 2 to Example 5 are reported in Table 1, where
p is the convexification parameters used in the outer approximation method when
solving the subproblems, x∗ is the optimal solution obtained, R∗ is the reliability
value at the optimal solution, NLP is the total number of subproblems solved,
NV represents the total number of vertices generated in the outer approximation
method and CPU times are measured on a SUN SPARCstation 5.
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